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CHAPTER 18
Network Routing - II

Routing Around Failures

This chapter describes the mechanisms used by distributed routing protocols to handle
link and node failures, packet losses (which may cause advertisements to be lost), changes
in link costs, and (as in the previous chapter) new nodes and links being added to the
network. We will use the term churn to refer to any changes in the network topology. Our
goal is to find the best paths in the face of churn. Of particular interest will be the ability to
route around failures, finding the minimum-cost working paths between any two nodes
from among the set of available paths.

We start by discussing what it means for a routing protocol to be correct, and define our
correctness goal in the face of churn. The first step to solving the problem is to discover
failures. In routing protocols, each node is responsible for discovering which of its links
and corresponding nodes are still working; most routing protocols use a simple HELLO
protocol for this task. Then, to handle failures, each node runs the advertisement and integra-
tion steps periodically. The idea is for each node to repeatedly propagate what it knows
about the network topology to its neighbors so that any changes are propagated to all the
nodes in the network. These periodic messages are the key mechanism used by routing
protocols to cope with changes in the network. Of course, the routing protocol has to be
robust to packet losses that cause various messages to be lost; for example, one can’t use
the absence of a single message to assume that a link or node has failed, for packet losses
are usually far more common than actual failures.

We will see that the distributed computation done in the distance-vector protocol in-
teracts adversely with the periodic advertisements and causes the routing protocol to not
produce correct routing tables in the face of certain kinds of failures. We will present and
analyze a few different solutions that overcome these adverse interactions, which extend
our distance-vector protocol. We also discuss some circumstances under which link-state
protocols don’t work correctly. We conclude this chapter by comparing link-state and dis-
tance vector protocols.
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⌅ 18.1 Correctness and Convergence

In an ideal, correctly working routing protocol, two properties hold:

1. For any node, if the node has a route to a given destination, then there will be a
usable path in the network topology from the node to the destination that traverses
the link named in the route. We call this property route validity.

2. In addition, each node will have a route to each destination for which there is a
usable path in the network topology, and any packet forwarded along the sequence
of these routes will reach the destination (note that a route is the outgoing link at
each switch; the sequence of routes corresponds to a path). We call this property path
visibility because it is a statement of how visible the usable paths are to the switches
in the network.

If these two properties hold in a network, then the network’s routing protocol is said to
have converged. It is impossible to guarantee that these properties hold at all times because
it takes a non-zero amount of time for any change to propagate through the network to all
nodes, and for all the nodes to come to some consensus on the state of the network. Hence,
we will settle for a less ambitious—though still challenging—goal, eventual convergence.
We define eventual convergence as follows: Given an arbitrary initial state of the network
and the routing tables at time t = 0, suppose some sequence of failure and recovery events
and other changes to the topology occur over some duration of time, ⌧ . After t = ⌧ , sup-
pose that no changes occur to the network topology, also that no route advertisements or
HELLO messages are lost. Then, if the routing protocol ensures that route validity and path
visibility hold in the network after some finite amount of time following t = ⌧ , then the protocol is
said to “eventually converge”.

In practice, it is quite possible, and indeed likely, that there will be no time ⌧ after
which there are no changes or packet losses, but even in these cases, eventual convergence
is a valuable property of a routing protocol because it shows that the protocol is working
toward ensuring that the routing tables are all correct. The time taken for the protocol to
converge after a sequence of changes have occurred (or from some initial state) is called
the convergence time. Thus, even though churn in real networks is possible at any time,
eventual convergence is still a valuable goal.

During the time it takes for the protocol to converge, a number of things could go
wrong: routing loops and reduced path visibility are two significant problems.

⌅ 18.1.1 Routing Loops

Suppose the nodes in a network each want a route to some destination D. If the routes
they have for D take them on a path with a sequence of nodes that form a cycle, then the
network has a routing loop. That is, if the path resulting from the routes at each successive
node forms a sequence of two or more nodes n

1

, n
2

, . . . , nk in which ni = nj for some
i 6= j, then we have a routing loop. A routing loop violates the route validity correctness
condition. If a routing loop occurs, packets sent along this path to D will be stuck in
the network forever, unless other mechanisms are put in place (while packets are being
forwarded) to “flush” such packets from the network (see Section 18.2).
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⌅ 18.1.2 Reduced Path Visibility

This problem usually arises when a failed link or node recovers after a failure and a pre-
viously unreachable part of the network now becomes reachable via that link or node.
Because it takes time for the protocol to converge, it takes time for this information to
propagate through the network and for all the nodes to correctly compute paths to nodes
on the “other side” of the network. During that time, the routing tables have not yet con-
verged, so as far as data packets are concerned, the previously unreachable part of the
network still remains that way.

⌅ 18.2 Alleviating Routing Loops: Hop Limits on Packets

If a packet is sent along a sequence of routers that are part of a routing loop, the packet
will remain in the network until the routing loop is eliminated. The typical time scales over
which routing protocols converge could be many seconds or even a few minutes, during
which these packets may consume significant amounts of network bandwidth and reduce
the capacity available to other packets that can be sent successfully to other destinations.

To mitigate this (hopefully transient) problem, it is customary for the packet header to
include a hop limit. The source sets the “hop limit” field in the packet’s header to some
value larger than the number of hops it believes is needed to get to the destination. Each
switch, before forwarding the packet, decrements the hop limit field by 1. If this field reaches
0, then it does not forward the packet, but drops it instead (optionally, the switch may send
a diagnostic packet toward the source telling it that the switch dropped the packet because
the hop limit was exceeded).

The forwarding process needs to make sure that if a checksum covers the hop limit
field, then the checksum needs to be adjusted to reflect the decrement done to the hop-
limit field.1

Combining this information with the rest of the forwarding steps discussed in the pre-
vious chapter, we can summarize the basic steps done while forwarding a packet in a
best-effort network as follows:

1. Check the hop-limit field. If it is 0, discard the packet. Optionally, send a diagnos-
tic packet toward the packet’s source saying “hop limit exceeded”; in response, the
source may decide to stop sending packets to that destination for some period of
time.

2. If the hop-limit is larger than 0, then perform a routing table lookup using the des-
tination address to determine the route for the packet. If no link is returned by the
lookup or if the link is considered “not working” by the switch, then discard the
packet. Otherwise, if the destination is the present node, then deliver the packet to
the appropriate protocol or application running on the node. Otherwise, proceed to
the next step.

3. Decrement the hop-limit by 1. Adjust the checksum (typically the header checksum)
if necessary. Enqueue the packet in the queue corresponding to the outgoing link

1IP version 4 has such a header checksum, but IP version 6 dispenses with it, because higher-layer protocols
used to provide reliable delivery have a checksum that covers portions of the IP header.
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returned by the route lookup procedure. When this packet reaches the head of the
queue, the switch will send the packet on the link.

⌅ 18.3 Neighbor Liveness: HELLO Protocol

As mentioned in the previous chapter, determining which of a node’s neighbors is cur-
rently alive and working is the first step in any routing protocol. We now address this
question: how does a node determine its current set of neighbors? The HELLO protocol
solves this problem.

The HELLO protocol is simple and is named for the kind of message it uses. Each
node sends a HELLO packet along all its links periodically. The purpose of the HELLO is
to let the nodes at the other end of the links know that the sending node is still alive. As
long as the link is working, these packets will reach. As long as a node hears another’s
HELLO, it presumes that the sending node is still operating correctly. The messages are
periodic because failures could occur at any time, so we need to monitor our neighbors
continuously.

When should a node remove a node at the other end of a link from its list of neighbors?
If we knew how often the HELLO messages were being sent, then we could wait for a cer-
tain amount of time, and remove the node if we don’t hear even one HELLO packet from it
in that time. Of course, because packet losses could prevent a HELLO packet from reach-
ing, the absence of just one (or even a small number) of HELLO packets may not be a sign
that the link or node has failed. Hence, it is best to wait for enough time before deciding
that a node whose HELLO packets we haven’t heard should no longer be a neighbor.

For this approach to work, HELLO packets must be sent at some regularity, such that
the expected number of HELLO packets within the chosen timeout is more or less the
same. We call the mean time between HELLO packet transmissions the HELLO INTERVAL.
In practice, the actual time between these transmissions has small variance; for instance,
one might pick a time drawn randomly from [HELLO INTERVAL - �, HELLO INTERVAL +
�], where � < HELLO INTERVAL.

When a node doesn’t hear a HELLO packet from a node at the other end of a direct link
for some duration, k· HELLO INTERVAL, it removes that node from its list of neighbors
and considers that link “failed” (the node could have failed, or the link could just be expe-
rienced high packet loss, but we assume that it is unusable until we start hearing HELLO
packets once more).

The choice of k is a trade-off between the time it takes to determine a failed link and the
odds of falsely flagging a working link as “failed” by confusing packet loss for a failure (of
course, persistent packet losses that last a long period of time should indeed be considered
a link failure, but the risk here in picking a small k is that if that many successive HELLO
packets are lost, we will consider the link to have failed). In practice, designers pick k
by evaluating the latency before detecting a failure (k· HELLO INTERVAL) with the prob-
ability of falsely flagging a link as failed. This probability is `k, where ` is the packet loss
probability on the link, assuming—and this is a big assumption in some networks—that
packet losses are independent and identically distributed.
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⌅ 18.4 Periodic Advertisements

The key idea that allows routing protocols to adapt to dynamic network conditions is pe-
riodic routing advertisements and the integration step that follows each such advertise-
ment. This method applies to both distance-vector and link-state protocols. Each node
sends an advertisement every ADVERT INTERVAL seconds to its neighbors. In response,
in a distance-vector protocol, each receiving node runs the integration step; in the link-
state protocol each receiving node rebroadcasts the advertisement to its neighbors if it has
not done so already for this advertisement. Then, every ADVERT INTERVAL seconds, off-
set from the time of its own advertisement by ADVERT INTERVAL/2 seconds, each node
in the link-state protocol runs its integration step. That is, if a node sends its advertise-
ments at times t

1

, t
2

, t
3

, . . ., where the mean value of ti+1

� ti =ADVERT INTERVAL, then
the integration step runs at times (t

1

+ t
2

)/2, (t
2

+ t
3

)/2, . . .. Note that one could imple-
ment a distance-vector protocol by running the integration step at such offsets, but we
don’t need to because the integration in that protocol is easy to run incrementally as soon
as an advertisement arrives.

It is important to note that in practice the advertisements at the different nodes are
unsynchronized. That is, each node has its own sequence of times at which it will send its
advertisements. In a link-state protocol, this means that in general the time at which a
node rebroadcasts an advertisement it hears from a neighbor (which originated at either
the neighbor or some other node) is not the same as the time at which it originates its own
advertisement. Similarly, in a distance-vector protocol, each node sends its advertisement
asynchronously relative to every other node, and integrates advertisements coming from
neighbors asynchronously as well.

⌅ 18.5 Link-State Protocol Under Failure and Churn

We now argue that a link-state protocol will eventually converge (with high probability)
given an arbitrary initial state at t = 0 and a sequence of changes to the topology that all
occur within time (0, ⌧), assuming that each working link has a “high enough” probability
of delivering a packet. To see why, observe that:

1. There exists some finite time t
1

> ⌧ at which each node will correctly know, with
high probability, which of its links and corresponding neighboring nodes are up and
which have failed. Because we have assumed that there are no changes after ⌧ and
that all packets are delivered with high-enough probability, the HELLO protocol run-
ning at each node will correctly enable the neighbors to infer its liveness. The arrival
of the first HELLO packet from a neighbor will provide evidence for liveness, and if
the delivery probability is high enough that the chances of k successive HELLO pack-
ets to be lost before the correct link state propagates to all the nodes in the network
is small, then such a time t

1

exists.

2. There exists some finite time t
2

> t
1

at which all the nodes have received, with high
probability, at least one copy of every other node’s link-state advertisement. Once
a node has its own correct link state, it takes a time proportional to the diameter of
the network (the number of hops in the longest shortest-path in the network) for that
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Figure 18-1: Distance-vector protocol showing the “count-to-infinity” problem (see Section 18.6 for the
explanation).

advertisement to propagate to all the other nodes, assuming no packet loss. If there
are losses, then notice that each node receives as many copies of the advertisement
as there are neighbors, because each neighbor sends the advertisement once along
each of its links. This flooding mechanism provides a built-in reliability at the cost of
increased bandwidth consumption. Even if a node does not get another node’s LSA,
it will eventually get some LSA from that node given enough time, because the links
have a high-enough packet delivery probability.

3. At a time roughly ADVERT INTERVAL/2 after receiving every other node’s correct
link-state, a node will compute the correct routing table.

Thus, one can see that under good packet delivery conditions, a link-state protocol can
converge to the correct routing state as soon as each node has advertised its own link-
state advertisement, and each advertisement is received at least once by every other node.
Thus, starting from some initial state, because each node sends an advertisement within
time ADVERT INTERVAL on average, the convergence time is expected to be at least this
amount. We should also add a time of roughly ADVERT INTERVAL/2 seconds to this quan-
tity to account for the delay before the node actually computes the routing table. This time
could be higher, if the routes are recomputed less often on average, or lower, if they are
recomputed more often.

Ignoring when a node recomputes its routes, we can say that if each node gets at least
one copy of each link-state advertisement, then the expected convergence time of the
protocol is one advertisement interval plus the amount of time it takes for an LSA message
to traverse the diameter of the network. Because the advertisement interval is many orders
of magnitude larger than the message propagation time, the first term is dominant.

Link-state protocols are not free from routing loops, however, because packet losses
could cause problems. For example, if a node A discovers that one of its links has failed, it
may recompute a route to a destination via some other neighboring node, B. If B does not
receive a copy of A’s LSA, and if B were using the link to A as its route to the destination,
then a routing loop would ensue, at least until the point when B learned about the failed
link.

In general, link-state protocols are a good way to achieve fast convergence.

⌅ 18.6 Distance-Vector Protocol Under Failure and Churn

Unlike in the link-state protocol where the flooding was distributed but the route computa-
tion was centralized at each node, the distance-vector protocol distributes the computation
too. As a result, its convergence properties are far more subtle.
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Consider for instance a simple “chain” topology with three nodes, A, B, and destination
D (Figure 18-1). Suppose that the routing tables are all correct at t = 0 and then that link
between B and D fails at some time t < ⌧ . After this event, there are no further changes to
the topology.

Ideally, one would like the protocol to do the following. First, B’s HELLO protocol
discovers the failure, and in its next routing advertisement, sends a cost of INFINITY (i.e.,
“unreachable”) to A. In response, A would conclude that B no longer had a route to D, and
remove its own route to D from its routing table. The protocol will then have converged,
and the time taken for convergence not that different from the link-state case (proportional
to the diameter of the network in general).

Unfortunately, things aren’t so clear cut because each node in the distance-vector pro-
tocol advertises information about all destinations, not just those directly connected to it.
What could easily have happened was that before B sent its advertisment telling A that
the cost to D had become INFINITY, A’s advertisement could have reached B telling B
that the cost to D is 2. In response, B integrates this route into its routing table because 2
is smaller than B’s own cost, which is INFINITY. You can now see the problem—B has a
wrong route because it thinks A has a way of reaching D with cost 2, but it doesn’t really
know that A’s route is based on what B had previously told him! So, now A thinks it has
a route with cost 2 of reaching D and B thinks it has a route with cost 2 + 1 = 3. The next
advertisement from B will cause A to increase its own cost to 3 + 1 = 4. Subsequently,
after getting A’s advertisement, B will increase its cost to 5, and so on. In fact, this mess
will continue, with both nodes believing that there is some way to get to the destination
D, even though there is no path in the network (i.e., the route validity property does not
hold here).

There is a colorful name for this behavior: counting to infinity. The only way in which
each node will realize that D is unreachable is for the cost to reach INFINITY. Thus, for
this distance-vector protocol to converge in reasonable time, the value of INFINITY must
be quite small! And, of course, INFINITY must be at least as large as the cost of the longest
usable path in the network, for otherwise that routes corresponding to that path will not
be found at all.

We have a problem. The distance-vector protocol was attractive because it consumed far
less bandwidth than the link-state protocol, and so we thought it would be more appopri-
ate for large networks, but now we find that INFINITY (and hence the size of networks for
which the protocol is a good match) must be quite small! Is there a way out of this mess?

First, let’s consider a flawed solution. Instead of B waiting for its normal advertisment
time (every ADVERT INTERVAL seconds on average), what if B sent news of any unreach-
able destination(s) as soon as its integration step concludes that a link has failed and some
destination(s) has cost INFINITY? If each node propagated this “bad news” fast in its ad-
vertisement, then perhaps the problem will disappear.

Unfortunately, this approach does not work because advertisement packets could easily
be lost. In our simple example, even if B sent an advertisement immediately after discov-
ering the failure of its link to D, that message could easily get dropped and not reach A.
In this case, we’re back to square one, with B getting A’s advertisement with cost 2, and
so on. Clearly, we need a more robust solution. We consider two, in turn, each with fancy
names: split horizon routing and path vector routing. Both generalize the distance-vector
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Figure 18-2: Split horizon (with or without poison reverse) doesn’t prevent routing loops of three or more
hops. The dashed arrows show the routing advertisements for destination D. If link BD fails, as explained
in the text, it is possible for a “count-to-infinity” routing loop involving A,B, and C to ensue.

protocol in elegant ways.

⌅ 18.7 Distance Vector with Split Horizon Routing

The idea in the split horizon extension to distance-vector routing is simple:

If a node A learns about the best route to a destination D from neighbor B, then A will
not advertise its route for D back to B.

In fact, one can further ensure that B will not use the route advertised by A by having
A advertise a route to D with a cost of INFINITY. This modification is called a poison reverse,
because the node (A) is poisoning its route for D in its advertisement to B.

It is easy to see that the two-node routing loop that showed up earlier disappears with
the split horizon technique.

Unfortunately, this method does not solve the problem more generally; loops of three
or more hops can persist. To see why, look at the topology in Figure 18-2. Here, B is
connected to destination D, and two other nodes A and C are connected to B as well as
to each other. Each node has the following correct routing state at t = 0: A thinks D is at
cost 2 (and via B), B thinks D is at cost 1 via the direct link, and C thinks D is at cost S
(and via B). Each node uses the distance-vector protocol with the split horizon technique
(it doesn’t matter whether they use poison reverse or not), so A and C advertise to B that
their route to D has cost INFINITY. Of course, they also advertise to each other that there
is a route to D with cost 2; this advertisement is useful if link AB (or BC) were to fail,
because A could then use the route via C to get to D (or C could use the route via A).

Now, suppose the link BD fails at some time t < ⌧ . Ideally, if B discovers the failure
and sends a cost of INFINITY to A and C in its next update, all the nodes will have the
correct cost to D, and there is no routing loop. Because of the split horizon scheme, B
does not have to send its advertisement immediately upon detecting the failed link, but
the sooner it does, the better, for that will enable A and C to converge sooner.
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Figure 18-3: Path vector protocol example.

However, suppose B’s routing advertisement with the updated cost to D (of INFINITY)
reaches A, but is lost and doesn’t show up at C. A now knows that there is no route of finite
cost to D, but C doesn’t. Now, in its next advertisement, C will advertise a route to D of
cost 2 to A (and a cost of INFINITY to B because of poison reverse). In response, A will
assume that C has found a better route than what A has (which is a “null” route with cost
INFINITY), and integrate that into its table. In its next advertisement, A will advertise to
B that it has a route of cost 3 to destination D, and B will incorporate that route at cost 4!
It is easy to see now that when B advertises this route to C, it will cause C to increase its
cost to 5, and so on. The count-to-infinity problem has shown up again!

Path vector routing is a good solution to this problem.

⌅ 18.8 Path-Vector Routing

The insight behind the path vector protocol is that a node needs to know when it is safe
and correct to integrate any given advertisement into its routing table. The split horizon
technique was an attempt that worked in only a limited way because it didn’t prevent
loops longer than two hops. The path vector technique extends the distance vector adver-
tisement to include not only the cost, but also the nodes along the best path from the node to the
destination. It looks like this:

[dest1 cost1 path1 dest2 cost2 path2 dest3 cost3 path3 ...]

Here, each “path” is the concatenation of the identifiers of the node along the path, with
the destination showing up at the end (the opposite convention is equivalent, as long as
all nodes treat the path consistently). Figure 18-3 shows an example.

The integration step at node n should now be extended to only consider an advertise-
ment as long as n does not already appear on the advertised path. With that step, the rest
of the integration step of the distance vector protocol can be used unchanged.

Given an initial state at t = 0 and a set of changes in (0, ⌧), and assuming that each
link has a high-enough packet delivery probability, this path vector protocol eventually
converges (with high probability) to the correct state without “counting to infinity”. The
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time it takes to converge when each node is interested in finding the minimum-cost path
is proportional to the length of the longest minimum-cost path multiplied by the adver-
tisement interval. The reason is as follows. Initially, each node knows nothing about the
network. After one advertisement interval, it learns about its neighbors routing tables, but
at this stage those tables have nothing other than the nodes themselves. Then, after the
next advertisement, each node learns about all nodes two hops away and how to reach
them. Eventually, after k advertisements, each node learns about how to reach all nodes k
hops away, assuming of course that no packet losses occur. Hence, it takes d advertisement
intervals before a node discovers routes to all the other nodes, where d is the length of the
longest minimum-cost path from the node.

Compared to the distance vector protocol, the path vector protocol consumes more net-
work bandwidth because now each node needs to send not just the cost to the destination,
but also the addresses (or identifiers) of the nodes along the best path. In most large real-
world networks, the number of links is large compared to the number of nodes, and the
length of the minimum-cost paths grows slowly with the number of nodes (typically log-
arithmically). Thus, for large network, a path vector protocol is a reasonable choice.

We are now in a position to compare the link-state protocol with the two vector proto-
cols (distance-vector and path-vector).

⌅ 18.9 Summary: Comparing Link-State and Vector Protocols

There is nothing either good or bad, but thinking makes it so.
—Hamlet, Act II (scene ii)

Bandwidth consumption. The total number of bytes sent in each link-state advertise-
ment is quadratic in the number of links, while it is linear in the number of links for the
distance-vector protocol.

The advertisement step in the simple distance-vector protocol consumes less band-
width than in the simple link-state protocol. Suppose that there are n nodes and m links
in the network, and that each [node pathcost] or [neighbor linkcost] tuple in an advertise-
ment takes up k bytes (k might be 6 in practice). Each advertisement also contains a source
address, which (for simplicity) we will ignore.

Then, for distance-vector, each node’s advertisement has size kn. Each such adver-
tisement shows up on every link twice, because each node advertises its best path cost to
every destination on each of its link. Hence, the total bandwidth consumed is roughly
2knm/ADVERT INTERVAL bytes/second.

The calculation for link-state is a bit more involved. The easy part is to observe that
there’s a “origin address” and sequence number of each LSA to improve the efficiency
of the flooding process, which isn’t needed in distance-vector. If the sequence number
is ` bytes in size, then because each node broadcasts every other node’s LSA once, the
number of bytes sent is `n. However, this is a second-order effect; most of the bandwidth
is consumed by the rest of the LSA. The rest of the LSA consists of k bytes of information per
neighbor. Across the entire network, this quantity accounts for k(2m) bytes of information,
because the sum of the number of neighbors of each node in the network is 2m. Moreover,
each LSA is re-broadcast once by each node, which means that each LSA shows up twice
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on every link. Therefore, the total number of bytes consumed in flooding the LSAs over
the network to all the nodes is k(2m)(2m) = 4km2. Putting it together with the bandwidth
consumed by the sequence number field, we find that the total bandwidth consumed is
(4km2

+ 2`mn)/ADVERT INTERVAL bytes/second.
It is easy to see that there is no connected network in which the bandwidth consumed

by the simple link-state protocol is lower than the simple distance-vector protocol; the
important point is that the former is quadratic in the number of links, while the latter
depends on the product of the number of nodes and number of links.

Convergence time. The convergence time of our distance vector and path vector proto-
cols can be as large as the length of the longest minimum-cost path in the network mul-
tiplied by the advertisement interval. The convergence time of our link-state protocol is
roughly one advertisement interval.

Robustness to misconfiguration. In a vector protocol, each node advertises costs and/or
paths to all destinations. As such, an error or misconfiguration can cause a node to wrongly
advertise a good route to a destination that the node does not actually have a good route
for. In the worst case, it can cause all the traffic being sent to that destination to be hijacked
and possibly “black holed” (i.e., not reach the intended destination). This kind of problem
has been observed on the Internet from time to time. In contrast, the link-state protocol
only advertises each node’s immediate links. Of course, each node also re-broadcasts the
advertisements, but it is harder for any given erroneous node to wreak the same kind of
havoc that a small error or misconfiguration in a vector protocol can.

In practice, link-state protocols are used in smaller networks typically within a single
company (enterprise) network. The routing between different autonomously operating
networks in the Internet uses a path vector protocol. Variants of distance vector protocols
that guarantee loop-freedom are used in some small networks, including some wireless
“mesh” networks built out of short-range (WiFi) radios.
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⌅ Exercises

Some of these questions test a basic understanding of the mechanisms used in routing pro-
tocols. Others involve an analysis of the times at which certain events occur in a protocol.
These questions are intended to see how well you understand the dynamics of different
routing protocols.

1. Why does the link-state advertisement include a sequence number?

2. What is the purpose of the hop limit field in packet headers? Is that field used in
routing or in forwarding?

3. Describe clearly why the convergence time of our distance vector protocol can be as
large as the length of the longest minimum-cost path in the network.

4. Suppose a link connecting two nodes in a network drops packets independently with
probability 10%. If we want to detect a link failure with a probability of falsely re-
porting a failure of  0.1%, and the HELLO messages are sent once every 10 seconds,
then how much time does it take to determine that a link has failed?

5. You’ve set up a 6-node connected network topology in your home, with nodes
named A,B, . . . ,F . Inspecting A’s routing table, you find that some entries have
been mysteriously erased (shown with “?” below), but you find the following en-
tries:

Destination Cost Next-hop
B 3 C
C 2 ?
D 4 E
E 2 ?
F 1 ?

Each link has a cost of either 1 or 2 and link costs are symmetric (the cost from X
to Y is the same as the cost from Y to X). The routing table entries correspond to
minimum-cost routes.

(a) Draw a network topology with the smallest number of links that is consistent with
the routing table entries shown above and the cost information provided. Label
each node and show each link cost clearly.

(b) You know that there could be other links in the topology. To find out, you now
go and inspect D’s routing table, but it is mysteriously empty. What is the small-
est possible value for the cost of the path from D to F in your home network
topology? (Assume that any two nodes may possibly be directly connected to
answer this question.)

6. A network with N nodes and N bi-directional links is connected in a ring as shown
in Figure 18-4, where N is an even number. The network runs a distance-vector
protocol in which the advertisement step at each node runs when the local time is
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T ⇤ i seconds and the integration step runs when the local time is T ⇤ i+ T
2

seconds,
(i = 1,2, . . .). Each advertisement takes time � to reach a neighbor. Each node has a
separate clock and time is not synchronized between the different nodes.

1 

2 
3 

4 

N 

N-1 
N-2 

N-3 

N+1 X 
Removed 

Link 

Added 
Node 

Figure 18-4: The ring network with N nodes (N is even).

Suppose that at some time t after the routing has converged, node N + 1 is inserted
into the ring, as shown in the figure above. Assume that there are no other changes
in the network topology and no packet losses. Also assume that nodes 1 and N
update their routing tables at time t to include node N + 1, and then rely on their
next scheduled advertisements to propagate this new information.

(a) What is the minimum time before every node in the network has a route to node
N + 1?

(b) What is the maximum time before every node in the network has a route to
node N + 1?

7. Alyssa P. Hacker manages MIT’s internal network that runs link-state routing. She
wants to experiment with a few possible routing strategies. Listed below are the
names of four strategies and a brief description of what each one does.

(a) MinCost: Every node picks the path that has the smallest sum of link costs along
the path. (This is the minimum cost routing you implemented in the lab).

(b) MinHop: Every node picks the path with the smallest number of hops (irrespec-
tive of what the cost on the links is).

(c) SecondMinCost: Every node picks the path with the second lowest sum of link
costs. That is, every node picks the second best path with respect to path costs.

(d) MinCostSquared: Every node picks the path that has the smallest sum of
squares of link costs along the path.

Assume that sufficient information is exchanged in the link state advertisements, so
that every node has complete information about the entire network and can correctly
implement the strategies above. You can also assume that a link’s properties don’t
change, e.g., it doesn’t fail.
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(a) Help Alyssa figure out which of these strategies will work correctly, and which
will result in routing with loops. In case of strategies that do result in rout-
ing loops, come up with an example network topology with a routing loop to
convince Alyssa.

(b) How would you implement MinCostSquared in a distance-vector protocol?
Specify what the advertisements should contain and what the integration step
must do.

8. Alyssa P. Hacker implements the 6.02 distance-vector protocol on the network shown
below. Each node has its own local clock, which may not be synchronized with any
other node’s clock. Each node sends its distance-vector advertisement every 100
seconds. When a node receives an advertisement, it immediately integrates it. The
time to send a message on a link and to integrate advertisements is negligible. No
advertisements are lost. There is no HELLO protocol in this network.

A 6

2

2

B C

DS
2

1
7

(a) At time 0, all the nodes except D are up and running. At time 10 seconds,
node D turns on and immediately sends a route advertisement for itself to all
its neighbors. What is the minimum time at which each of the other nodes is guar-
anteed to have a correct routing table entry corresponding to a minimum-cost
path to reach D? Justify your answers.

(b) If every node sends packets to destination D, and to no other destination, which
link would carry the most traffic?
Alyssa is unhappy that one of the links in the network carries a large amount
of traffic when all the nodes are sending packets to D. She decides to overcome
this limitation with Alyssa’s Vector Protocol (AVP). In AVP, S lies, advertising
a “path cost” for destination D that is different from the sum of the link costs
along the path used to reach D. All the other nodes implement the standard
distance-vector protocol, not AVP.

(c) What is the smallest numerical value of the cost that S should advertise for D
along each of its links, to guarantee that only its own traffic for D uses its direct
link to D? Assume that all advertised costs are integers; if two path costs are
equal, one can’t be sure which path will be taken.

9. Help Ben Bitdiddle answer these questions about the distance-vector protocol he
runs on the network shown in Figure 18-5. The link costs are shown near each link.
Ben is interested in minimum-cost routes to destination node D.

Each node sends a distance-vector advertisement to all its neighbors at times
0, T,2T, . . .. Each node integrates advertisements at times T/2,3T/2,5T/2, . . .. You
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Figure 18-5: Time to converge = ?

may assume that all clocks are synchronized. The time to transmit an advertisement
over a link is negligible. There are no failures or packet losses.

At each node, a route for destination D is valid if packets using that route will even-
tually reach D.

At each node, a route for destination D is correct if packets using that route will
eventually reach D along some minimum-cost path.

(a) At what time will all nodes have integrated a valid route to D into their routing
tables? What node is the last one to integrate a valid route to D? Answer both
questions.

(b) At what time will all nodes have integrated a correct (minimum-cost) route to
D into their routing tables? What node is the last one to integrate a correct route
to D? Answer both questions.

10. Go Ahead, Make My Route: Jack Ripper uses a minimum-cost distance-vector routing
protocol in the network shown in Figure 18-6. Each link cost (not shown) is a positive
integer and is the same in each direction of the link. Jack sets “infinity” to 32 in the
protocol. After all routes have converged (breaking ties arbitrarily), F ’s routing table
is as follows:

Destination Cost Route
A 6 link hFCi

B 4 link hFCi

C 3
D 5 link hFDi

E 1

Using the information provided, answer these questions:

(a) Fill in the two missing blanks in the table above.

(b) For each link in the picture, write the link’s cost in the box near the link. Each
cost is either a positive integer or an expression of the form “< c, c,� c, or
> c”, for some integer c.
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Figure 18-6: Distance vector topology in Jack Ripper’s network.

(c) Suppose link hFEi fails, but there are no other changes. When the protocol
converges, what will F ’s route (not path) to E be? (If there is no route, say “no
route”.)

(d) Now suppose links hBCi and hBF i also fail soon after link hFEi fails. There
are no packet losses. In the worst case, C and F enter a “count-to-infinity”
phase. How many distinct route advertisements (with different costs) must C
hear from F , before C determines that it does not have any valid route to node
A?

11. Alyssa P. Hacker runs the link-state routing protocol in the network shown below.
Each node runs Dijkstra’s algorithm to compute minimum-cost routes to all other
destinations, breaking ties arbitrarily.
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Figure 18-7: Network in Alyssa’s link-state protocol.



SECTION 18.9. SUMMARY: COMPARING LINK-STATE AND VECTOR PROTOCOLS 295

The links in Alyssa’s network are unreliable; on each link, any packet sent over the
link is delivered with some probability, p, to the other end of the link, independent
of all other events (0 < p < 1). Suppose links hCEi and hBDi fail.

Answer the following questions.

(a) How do C and E discover that the link has failed? How does the method work?

(b) Over this unreliable network, link state advertisements (LSAs) are lost accord-
ing to the probabilities mentioned above. Owing to a bug in its software, E does
not originate any LSA of its own or flood them, but all other nodes (except E)
work correctly. Calculate the probability that A learns that link hCEi has failed
from the first LSA that originates from C after C discovers that link hCEi has
failed. Note that link hBDi has also failed.

(c) Suppose only link hCEi had failed, but not hBDi, which like the other surviv-
ing links can delivery packets successfully with probability p. Now, would the
answer to part (b) above increase, decrease, or remain the same? Why? (No
math necessary.)

12. Ben Bitdiddle operates a network whose routing protocol computes minimum-cost
paths between nodes. All link costs are positive integers. Initially the network has
five nodes, S,T,U,V, and W , with link costs as shown in the picture below. After
the routing protocol has converged to minimum-cost routes at each node, Ben adds
a new node, R, to the network, with the links and link costs as shown in Figure 18-8.
When the routing protocol converges, he finds that:

1. S’s route to destination V has changed,

2. T ’s route to destination U has changed, and

3. U ’s route to destination V has not changed.
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Figure 18-8: Network in problem 12.

In the routing protocol, an existing route changes only if the new route has a lower
cost; if there is a tie, the old route persists.
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To satisfy all of the three observations above, some constraints on the positive-
integer link costs (w

1

, w
2

, and w
3

) must necessarily hold. Specify these constraints,
explaining how you arrived at them.


