
MIT 6.02 DRAFT Lecture Notes
Last update: November 3, 2012
Comments, questions or bug reports?

Please contact hari at mit.edu

CHAPTER 19
Reliable Data Transport Protocols

Packets in a best-effort network lead a rough life. They can be lost for any number of rea-
sons, including queue overflows at switches because of congestion, repeated collisions
over shared media, routing failures, and uncorrectable bit errors. In addition, packets can
arrive out-of-order at the destination because different packets sent in sequence take differ-
ent paths or because some switch en route reorders packets for some reason. They usually
experience variable delays, especially whenever they encounter a queue. In some cases,
the underlying network may even duplicate packets.

Many applications, such as Web page downloads, file transfers, and interactive termi-
nal sessions would like a reliable, in-order stream of data, receiving exactly one copy of
each byte in the same order in which it was sent. A reliable transport protocol does the job
of hiding the vagaries of a best-effort network—packet losses, reordered packets, and du-
plicate packets—from the application, and provides it the abstraction of a reliable packet
stream. We will develop protocols that also provide in-order delivery.

A large number of protocols have been developed that various applications use, and
there are several ways to provide a reliable, in-order abstraction. This chapter will not
discuss them all, but will instead discuss two protocols in some detail. The first protocol,
called stop-and-wait, will solve the problem in perhaps the simplest possible way that
works, but do so somewhat inefficiently. The second protocol will augment the first one
with a sliding window to significantly improve performance.

All reliable transport protocols use the same powerful ideas: redundancy to cope with
packet losses and receiver buffering to cope with reordering, and most use adaptive timers. The
tricky part is figuring out exactly how to apply redundancy in the form of packet retrans-
missions, in working out exactly when retransmissions should be done, and in achieving
good performance. This chapter will study these issues, and discuss ways in which a reli-
able transport protocol can achieve high throughput.

⌅ 19.1 The Problem

The problem we’re going to solve is relatively easy to state. A sender application wants
to send a stream of packets to a receiver application over a best-effort network, which

297

298 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

can drop packets arbitrarily, reorder them arbitrarily, delay them arbitrarily, and possibly
even duplicate packets. The receiver wants the packets in exactly the same order in which
the sender sent them, and wants exactly one copy of each packet.1 Our goal is to devise
mechanisms at the sending and receiving nodes to achieve what the receiver wants. These
mechanisms involve rules between the sender and receiver, which constitute the proto-
col. In addition to correctness, we will be interested in calculating the throughput of our
protocols, and in coming up with ways to maximize it.

All mechanisms to recover from losses, whether they are caused by packet drops or
corrupted bits, employ redundancy. We have already studied error-correcting codes such as
linear block codes and convolutional codes to mitigate the effect of bit errors. In principle,
one could apply similar coding techniques over packets (rather than over bits) to recover
from packet losses (as opposed to bit corruption). We are, however, interested not just in
a scheme to reduce the effective packet loss rate, but to eliminate their effects altogether,
and recover all lost packets. We are also able to rely on feedback from the receiver that
can help the sender determine what to send at any point in time, in order to achieve that
goal. Therefore, we will focus on carefully using retransmissions to recover from packet
losses; one may combine retransmissions and error-correcting codes to produce a proto-
col that can further improve throughput under certain conditions. In general, experience
has shown that if packet losses are not persistent and occur in bursts, and if latencies are
not excessively long (i.e., not multiple seconds long), retransmissions by themselves are
enough to recover from losses and achieve good throughput. Most practical reliable data
transport protocols running over Internet paths today use only retransmissions on packets
(individual links usually use the error correction methods, such as the ones we studied
earlier, and may also augment them with a limited number of retransmissions to reduce
the link-level packet loss rate.

We will develop the key ideas for two kinds of reliable data transport protocols: stop-
and-wait and sliding window with a fixed window size. We will use the word “sender”
to refer to the sending side of the transport protocol and the word “receiver” to refer to
the receiving side. We will use “sender application” and “receiver application” to refer to
the processes (applications) that would like to send and receive data in a reliable, in-order
manner.

⌅ 19.2 Stop-and-Wait Protocol

The high-level idea in this protocol is simple. The sender attaches a transport-layer header
to every data packet, which includes a unique identifier for the data packet (the transport-
layer header is distinct from the network-layer packet header that contains the destination
address, hop limit, and header checksum discussed in Chapters 17 and 18). Ideally, this
unique identifier will never be reused for two different packets on the same stream.2 The

1The reason for the “exactly one copy” requirement is that the mechanism used to solve the problem will
end up retransmitting packets, so duplicates may occur that need to be filtered out. In some networks, it is
possible that some links may end up duplicating packets because of mechanisms they employ to improve the
packet delivery probability or bit-error rate over the link.

2In an ideal implementation, such reuse will never occur. In practice, however, a transport protocol may
use a sequence number field whose width is not large enough and sequence numbers may wrap-around.
In this case, it is important to ensure that two distinct unacknowledged data packets never have the same

SECTION 19.2. STOP-AND-WAIT PROTOCOL 299

 1 RTT

Sender Receiver

Data 1

Data 2

ACK 1

Normal behavior

(no losses)

ACK 2

Data 3

ACK 3

Data 1

X

Data 1

Timeout

Retransmit Data 1

X

Data 1

S R S R

Data loss +

retransmission

Duplicate

packet reception

ACK 1 lost

Figure 19-1: The stop-and-wait protocol. Each picture has a sender timeline and a receiver timeline. Time
starts at the top of each vertical line and increases moving downward. The picture on the left shows what
happens when there are no losses; the middle shows what happens on a data packet loss; and the right
shows how duplicate packets may arrive at the receiver because of an ACK loss.

receiver, upon receiving the data packet with identifier k, will send an acknowledgment
(ACK) to the sender; the header of this ACK contains k, so the receiver communicates “I
got data packet k” to the sender. Both data packets and ACKs may get lost in the network.

In the stop-and-wait protocol, the sender sends the next data packet on the stream if,
and only if, it receives an ACK for k. If it does not get an ACK within some period of time,
called the timeout, the sender retransmits data packet k.

The receiver’s job is to deliver each data packet it receives to the receiver application.
Figure 19-1 shows the basic operation of the protocol when packets are not lost (left) and
when data packets are lost (right).

Three properties of this protocol bear some discussion:

1. how to pick unique identifiers,

2. why this protocol may deliver duplicate data packets to the receiver application, and
how the receiver can prevent that from occurring, and

3. how to pick the timeout.

We discuss each of these in turn below.

sequence number.

300 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

⌅ 19.2.1 Selecting Unique Identifiers: Sequence Numbers

The sender may pick any unique identifier for a data packet. In most transport protocols,
a convenient and effective choice of unique identifier is to use an incrementing sequence
number. The simplest way to achieve this goal is for the sender and receiver to agree on
the initial value of the identifier (which for our purposes will be taken to be 1), and then
increment the identifier by 1 for each subsequent new data packet sent. Thus, the data
packet sent after the ACK for k is received by the sender will have identifier k + 1. These
incrementing identifiers are called sequence numbers.

In practice, transport protocols like TCP (Transmission Control Protocol), the standard
Internet protocol for reliable data delivery, devote considerable effort to picking a good
initial sequence number to avoid overlaps with previous instantiations of reliable streams
between the same communicating processes. We won’t worry about these complications
in this chapter, except to note that establishing and properly terminating these streams
(aka connections) reliably is a non-trivial problem. TCP also uses a sequence number that
identifies the starting byte offset of the packet in the stream, to handle variable packet sizes.

⌅ 19.2.2 Semantics of this Stop-and-Wait Protocol

It is easy to see that the stop-and-wait protocol achieves reliable data delivery as long as
each of the links along the path have a non-zero packet delivery probability. However, it
does not achieve exactly once semantics; its semantics are at least once—i.e., each packet will
be delivered to the receiver application either once or more than once.

One reason is that the network could drop ACKs, as shown in Figure 19-1 (right). A
data packet may have reached the receiver, but the ACK doesn’t reach the sender, and the
sender will then timeout and retransmit the data packet. The receiver will get multiple
copies of the data packet, and deliver both to the receiver application. Another reason
is that the sender might have timed out, but the original data packet may not actually
have been lost. Such a retransmission is called a spurious retransmission, and is a waste of
bandwidth. The sender may strive to reduce the number of spurious retransmissions, but
it is impossible to eliminate them in general.

Preventing duplicates: The solution to the problem of duplicate data packets arriving
at the receiver is for the receiver to keep track of the last in-sequence data packet it has
delivered to the application. At the receiver, let us maintain the sequence number of the
last in-sequence data packet in the variable rcv seqnum. If a data packet with sequence
number less than or equal to rcv seqnum arrives, then the receiver sends an ACK for the
packet and discards it. Note that the only way a data packet with sequence number smaller
than rcv seqnum can arrive is if there were reordering in the network and the receiver
gets an old data packet; for such packets, the receiver can safely not send an ACK because
it knows that the sender knows about the receipt of the packet and has sent subsequent
packets. This method prevents duplicate packets from being delivered to the receiving
application.

If a data packet with sequence number rcv seqnum + 1 arrives, then the receiver
sends an ACK to the sender, delivers the data packet to the application, and increments
rcv seqnum. Note that a data packet with sequence number greater than rcv seqnum

SECTION 19.3. ADAPTIVE RTT ESTIMATION AND SETTING TIMEOUTS 301

+ 1 should never arrive in this stop-and-wait protocol because that would imply that the
sender got an ACK for rcv seqnum + 1, but such an ACK would have been sent only if
the receiver got the corresponding data packet. So, if such a data packet were to arrive,
then there must be a bug in the implementation of either the sender or the receiver in this
stop-and-wait protocol.

With this modification, the stop-and-wait protocol guarantees exactly-once delivery to
the application.3

⌅ 19.2.3 Setting Timeouts

The final design issue that we need to nail down in our stop-and-wait protocol is setting
the value of the timeout. How soon after the transmission of a packet should the sender
conclude that the data packet (or the ACK) was lost, and go ahead and retransmit? One
approach might be to use some constant, but then the question is what it should be set to.
Too small, and the sender may end up retransmitting data packets before giving enough
time for the ACK for the original transmission to arrive, wasting network bandwidth. Too
large, and one ends up wasting network bandwidth and simply idling before retransmit-
ting.

The natural time-scale in the protocol is the time between the transmission of a data
packet and the arrival of the ACK for the packet. This time is called the round-trip time,
or RTT, and plays a crucial role in all reliable transport protocols. A good value of the
timeout must clearly depend on the RTT; it makes no sense to use a timeout that is not
bigger than the mean RTT (and in fact, it must be quite a bit bigger than the average, as
we’ll see).

The other reason the RTT is an important concept is that the throughput (in packets per
second) achieved by the stop-and-wait protocol is inversely proportional to the RTT (see
Section 19.4). In fact, the throughput of the sliding window protocol also depends on the
RTT, as we will see.

The next section describes a procedure to estimate the RTT and set sender timeouts.
This technique is general and applies to a variety of protocols, including both stop-and-
wait and sliding window.

⌅ 19.3 Adaptive RTT Estimation and Setting Timeouts

The RTT experienced by packets is variable because the delays in a best-effort network are
variable. An example is shown in Figure 19-2, which shows the RTT of an Internet path
between two hosts (blue) and the packet loss rate (red), both as a function of the time-of-
day. The “rtt median-filtered” curve is the median RTT computed over a recent window
of samples, and you can see that even that varies quite a bit. Picking a timeout equal to
simply the mean or median RTT is not a good idea because there will be many RTT samples
that are larger than the mean (or median), and we don’t want to timeout prematurely and
send spurious retransmissions.

3We are assuming here that the sender and receiver nodes and processes don’t crash and restart; handling
those cases make “exactly once” semantics considerably harder than described here and require stable storage
that persists across crashes.

302 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

Figure 19-2: RTT variations are pronounced in many networks.

A good solution to the problem of picking the timeout value uses two tools we have
seen earlier in the course: probability distributions (in our case, of the RTT estimates) and a
simple filter design.

Suppose we are interested in estimating a good timeout post facto: i.e., suppose we run
the protocol and collect a sequence of RTT samples, how would one use these values to
pick a good timeout? We can take all the RTT samples and plot them as a probability
distribution, and then see how any given timeout value will have performed in terms of
the probability of a spurious retransmission. If the timeout value is T , then this probability
may be estimated as the area under the curve to the right of “T” in the picture on the left
of Figure 19-3, which shows the histogram of RTT samples. Equivalently, if we look at the
cumulative distribution function of the RTT samples (the picture on the right of Figure 19-
3, the probability of a spurious retransmission may be assumed to be the value of the y-axis
corresponding to a value of T on the x-axis.

Real-world distributions of RTT are not actually Gaussian, but an interesting property
of all distributions is that if you pick a threshold that is a sufficient number of standard
deviations greater than the mean, the tail probability of a sample exceeding that threshold
can be made arbitrarily small. (For the mathematically inclined, a useful result for arbi-
trary distributions is Chebyshev’s inequality, which you might have seen in other courses
already (or soon will): P (|X � µ| � k�) 1/k2, where µ is the mean and � the standard
deviation of the distribution. For Gaussians, the tail probability falls off much faster than
1/k2; for instance, when k = 2, the Gaussian tail probability is only about 0.05 and when
k = 3, the tail probability is about 0.003.)

The protocol designer can use past RTT samples to determine an RTT cut-off so that
only a small fraction f of the samples are larger. The choice of f depends on what spuri-
ous retransmission rate one is willing to tolerate, and depending on the protocol, the cost
of such an action might be small or large. Empirically, Internet transport protocols tend to

SECTION 19.3. ADAPTIVE RTT ESTIMATION AND SETTING TIMEOUTS 303

RTT sample 

Probability 

RTT sample 

Cumula,ve probability (CDF) 

Figure 19-3: RTT variations on a wide-area cellular wireless network (Verizon Wireless’s 3G CDMA Rev
A service) across both idle periods and when data transfers are in progress, showing extremely high RTT
values and high variability. The x-axis in both pictures is the RTT in milliseconds. The picture on the left
shows the histogram (each bin plots the total probability of the RTT value falling within that bin), while
the picture on the right is the cumulative distribution function (CDF). These delays suggest a poor network
design with excessively long queues that do nothing more than cause delays to be very large. Of course,
it means that the timeout method must adapt to these variations to the extent possible. (Data collected in
November 2009 in Cambridge, MA and Belmont, MA.)

be conservative and use k = 4, in an attempt to make the likelihood of a spurious retrans-
mission very small, because it turns out that the cost of doing one on an already congested
network is rather large.

Notice that this approach is similar to something we did earlier in the course when
we estimated the bit-error rate from the probability density function of voltage samples,
where values above (or below) a threshold would correspond to a bit error. In our case,
the “error” is a spurious retransmission.

So far, we have discussed how to set the timeout in a post-facto way, assuming we knew
what the RTT samples were. We now need to talk about two important issues to complete
the story:

1. How can the sender obtain RTT estimates?

2. How should the sender estimate the mean and deviation and pick a suitable timeout?

Obtaining RTT estimates. If the sender keeps track of when it sent each data packet, then
it can obtain a sample of the RTT when it gets an ACK for the packet. The RTT sample is
simply the difference in time between when the ACK arrived and when the data packet
was sent. An elegant way to keep track of this information in a protocol is for the sender
to include the current time in the header of each data packet that it sends in a “timestamp”
field. The receiver then simply echoes this time in its ACK. When the sender gets an ACK,
it just has to consult the clock for the current time, and subtract the echoed timestamp to
obtain an RTT sample.

304 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

Calculating the timeout. As explained above, our plan is to pick a timeout that uses
both the average and deviation of the RTT sample distribution. The sender must take two
factors into account while estimating these values:

1. It must not get swayed by infrequent samples that are either too large or too small.
That is, it must employ some sort of “smoothing”.

2. It must weigh more recent estimates higher than old ones, because network condi-
tions could have changed over multiple RTTs.

Thus, what we want is a way to track changing conditions, while at the same time not
being swayed by sudden changes that don’t persist.

Let’s look at the first requirement. Given a sequence of RTT samples, r
0

, r
1

, r
2

, . . . , rn,
we want a sequence of smoothed outputs, s

0

, s
1

, s
2

, . . . , sn that avoids being swayed by
sudden changes that don’t persist. This problem sounds like a filtering problem, which we
have studied earlier. The difference, of course, is that we aren’t applying it to frequency
division multiplexing, but the underlying problem is what a low-pass filter (LPF) does.

A simple LPF that provides what we need has the following form:

sn = ↵rn + (1� ↵)sn�1

, (19.1)

where 0 < ↵ < 1.
To see why Eq. (19.1) is a low-pass filter, let’s write down the frequency response, H(⌦).

We know that if rn = ej⌦n, then sn = H(⌦)ej⌦n. Letting z = ej⌦, we can rewrite Eq. (19.1)
as

H(⌦)zn = ↵zn + (1� ↵)H(⌦)z(n�1),

which then gives us
H(⌦) =

↵z

z � (1� ↵)
, (19.2)

This filter has a single real pole, and is stable when 0< ↵< 1. The peak of the frequency
response is at ⌦ = 0.

What does ↵ do? Clearly, large values of ↵ mean that we are weighing the current
sample much more than the existing s estimate, so there’s little memory in the system, and
we’re therefore letting higher frequencies through more than a smaller value of ↵. What
↵ does is determine the rate at which the frequency response of the LPF tapers: small ↵
makes lets fewer high-frequency components through, but at the same time, it takes more
time to react to persistent changes in the RTT of the network. As ↵ increases, we let more
higher frequencies through. Figure 19-4 illustrates this point.

Figure 19-5 shows how different values of ↵ react to a sudden non-persistent change
in the RTT, while Figure 19-6 shows how they react to a sudden, but persistent, change in
the RTT. Empirically, on networks prone to RTT variations due to congestion, researchers
have found that ↵ between 0.1 and 0.25 works well. In practice, TCP uses ↵ = 1/8.

The specific form of Equation 19.1 is very popular in many networks and computer
systems, and has a special name: exponential weighted moving average (EWMA). It is
a “moving average” because the LPF produces a smoothed estimate of the average be-
havior. It is “exponentially weighted” because the weight given to older samples decays

SECTION 19.3. ADAPTIVE RTT ESTIMATION AND SETTING TIMEOUTS 305

Figure 19-4: Frequency response of the exponential weighted moving average low-pass filter. As ↵ de-
creases, the low-pass filter becomes even more pronounced. The graph shows the response for ↵ =

0.9,0.5,0.1, going from top to bottom.

Figure 19-5: Reaction of the exponential weighted moving average filter to a non-persistent spike in the
RTT (the spike is double the other samples). The smaller ↵ (0.1, shown on the left) doesn’t get swayed by
it, whereas the bigger value (0.5, right) does. The output of the filter is shown in green, the input in blue.

geometrically: one can rewrite Eq. 19.1 as

sn = ↵rn + ↵(1� ↵)rn�1

+ ↵(1� ↵)2rn�2

+ . . .+ ↵(1� ↵)n�1r
1

+ (1� ↵)nr
0

, (19.3)

observing that each successive older sample’s weight is a factor of (1�↵) “less important”
than the previous one’s.

With this approach, one can compute the smoothed RTT estimate, srtt, quite easily
using the pseudocode shown below, which runs each time an ACK arrives with an RTT
estimate, r.

srtt ↵r+ (1� ↵)srtt

306 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

Figure 19-6: Reaction of the exponential weighted moving average filter to a persistent change (doubling)
in the RTT. The smaller ↵ (0.1, shown on the left) takes much longer to track the change, whereas the bigger
value (0.5, right) responds much quicker. The output of the filter is shown in green, the input in blue.

What about the deviation? Ideally, we want the sample standard deviation, but it turns
out to be a bit easier to compute the mean linear deviation instead.4 The following elegant
method performs this task:

dev |r� srtt|
rttdev � · dev+ (1� �) · rttdev

Here, 0 < � < 1, and we apply an EWMA to estimate the linear deviation as well. TCP
uses � = 0.25; again, values between 0.1 and 0.25 have been found to work well.

Finally, the timeout is calculated very easily as follows:

timeout srtt+ 4 · rttdev

This procedure to calculate the timeout runs every time an ACK arrives. It does a great
deal of useful work essential to the correct functioning of any reliable transport protocol,
and it can be implemented in less than 10 lines of code in most programming languages!
The reader should note that this procedure does not depend on whether the transport
protocol is stop-and-wait or sliding window; the same method works for both.

Exponential back-off of the timeout. When a timeout occurs and the sender retransmits
a data packet, it might be lost again (or its ACK might be lost). In that case, it is possible (in
networks where congestion is the main reason for packet loss) that the network is heavily
congested. Rather than using the same timeout value and retransmitting, it would be
prudent to take a leaf from the exponential back-off idea we studied earlier with contention
MAC protocols and double the timeout value. Eventually, when the retransmitted data
packet is acknowledged, the sender can revert to the timeout value calculated from the
mean RTT and its linear deviation. Most reliable transport protocols use an adaptive timer
with such an exponential back-off mechanism.

4The mean linear deviation is always at least as big as the sample standard deviation, so picking a timeout
equal to the mean plus k times the linear deviation has a tail probability no larger than picking a timeout equal
to the mean plus k times the sample standard deviation.

SECTION 19.4. THROUGHPUT OF STOP-AND-WAIT 307

⌅ 19.4 Throughput of Stop-and-Wait

We now show how to calculate the throughput of the stop-and-wait protocol. Clearly,
the maximum throughput occurs when there are no packet losses. The sender sends one
packet every RTT, so the maximum throughput is exactly that.

We can also calculate the throughput of stop-and-wait when the network has a packet
loss rate of `. For convenience, we will treat ` as the bi-directional loss rate; i.e., the prob-
ability of any given packet or its ACK getting lost is `.5 We will assume that the packet
loss distribution is independent and identically distributed. What is the throughput of the
stop-and-wait protocol in this case?

The answer clearly depends on the timeout that’s used. Let’s assume that the retrans-
mission timeout is RTO, which we will assume to be a constant for simplicity (i.e., it is
the same throughout the connection and the sender doesn’t use any exponential back-off).
These assumptions mean that the calculation below may be viewed as a (good) upper
bound on the throughput.

Let T denote the expected time taken to send a data packet and get an ACK for it. Ob-
serve that with probability 1� `, the data packet reaches the receiver and its ACK reaches
the sender. On the other hand, with probability `, the sender needs to time out and re-
transmit a data packet. We can use this property to write an expression for T :

T = (1� `) · RTT + `(RTO + T), (19.4)

because once the sender times out, the expected time to send a data packet and get an
ACK is exactly T , the number we want to calculate. Solving Equation (19.4), we find that
T = RTT +

`
1�` · RTO.

The expected throughput of the protocol is then equal to 1/T packets per second.6

The good thing about the stop-and-wait protocol is that it is very simple, and should be
used under two circumstances: first, when throughput isn’t a concern and one wants good
reliability, and second, when the network path has a small RTT such that sending one data
packet every RTT is enough to saturate the bandwidth of the link or path between sender
and receiver.

On the other hand, a typical Internet path between Boston and San Francisco might
have an RTT of about 100 milliseconds. If the network path has a bit rate of 1 megabit/s,
and we use a data packet size of 10,000 bits, then the maximum throughput of stop-and-
wait would be only 10% of the possible rate. And in the face of packet loss, it would be
much lower than that.

The next section describes a protocol that provides considerably higher throughput. It

5In general, we will treat the loss rate as a probability of loss, so it is a unit-less quantity between 0 and 1;
it is not a “rate” like the throughput. A better term might be the “loss probability” or a “loss ratio” but “loss
rate” has become standard terminology in networking.

6The careful reader or purist may note that we have only calculated T , the expected time between the trans-
mission of a data packet and the receipt of an ACK for it. We have then assumed that the expected value of the
reciprocal of X , which is a random variable whose expected value is T , is equal to 1/T . In general, however,
1/E[X] is not equal to E[1/X]. But the formula for the expected throughput we have written does in fact
hold. Intuitively, to see why, define Y

n

= X1 +X2 + . . .X
n

. As n ! 1, one can show using the Chebyshev
inequality that the probability that |Y

n

� nT | > �n goes to 0 or any positive �. That is, when viewed over a
long period of time, the random variable X looks like a constant—which is the only distribution for which the
expected value of the reciprocal is equal to the reciprocal of the expectation.

308 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

Sender& Receiver&
1&

2&

3&

4&

5&

6&

7&

8&

9&

10&

X&

1&

2&

3&

4&

5&

6&

7&

9&

10&11&

12&

13&

14&
8&

11&

12&

13&
8&

TI
M
EO

U
T&

Rxmit&8&

ACKs&

Packet&lost&

Sender’s&&window&size&=&5&

Figure 19-7: The sliding window protocol in action (W = 5 here).

builds on all the mechanisms used in the stop-and-wait protocol.

⌅ 19.5 Sliding Window Protocol

The idea is to use a window of data packets that are outstanding along the path between
sender and receiver. By “outstanding”, we mean “unacknowledged”. The idea then is
to overlap data packet transmissions with ACK receptions. For our purposes, a window
size of W data packets means that the sender has at most W outstanding data packets at
any time. Our protocol will allow the sender to pick W , and the sender will try to have
W outstanding data packets in the network at all times. The receiver is almost exactly
the same as in the stop-and-wait case, except that it must also buffer data packets that
might arrive out-of-order so that it can deliver them in order to the receiving application.
This enhancement makes the receiver more complicated than before, but this complexity
is worth the improvement in throughput in most situations.

The key idea in the protocol is that the window slides every time the sender gets an
ACK. The reason is that the receipt of an ACK is a positive signal that one data packet
left the network, and so the sender can add another to replenish the window. This plan is
shown in Figure 19-7 that shows a sender (top line) with W = 5 and the receiver (bottom
line) sending ACKs (dotted arrows) whenever it gets a data packet (solid arrow). Time
moves from left to right here.

There are at least two different ways of defining a window in a reliable transport proto-
col. Here, we will use the following:

SECTION 19.5. SLIDING WINDOW PROTOCOL 309

A window size of W means that the maximum number of outstanding (un-
acknowledged) data packets between sender and receiver is W .

When there are no packet losses, the operation of the sliding window protocol is fairly
straightforward. The sender transmits the next in-sequence data packet every time an
ACK arrives; if the ACK is for data packet k and the window is W , the data packet sent
out has sequence number k+W . The receiver ACKs each data packet echoing the sender’s
timestamp and delivers packets in sequence number order to the receiving application.
The sender uses the ACKs to estimate the smoothed RTT and linear deviations and sets
a timeout. Of course, the timeout will only be used if an ACK doesn’t arrive for a data
packet within that duration.

We now consider what happens when a packet is lost. Suppose the receiver has received
data packets 0 through k � 1 and the sender doesn’t get an ACK for data packet k. If
the subsequent data packets in the window reach the receiver, then each of those packets
triggers an ACK. So the sender will have the following ACKs assuming no further packets
are lost: k + 1, k + 2, . . . , k +W � 1. Moreover, upon the receipt of each of these ACKs,
an additional new data packet will get sent with an even higher sequence number. But
somewhere in the midst of these new data packet transmissions, the sender’s timeout for
data packet k will occur, and the sender will retransmit that packet. If that data packet
reaches, then it will trigger an ACK, and if that ACK reaches the sender, yet another new
data packet with a new sequence number one larger than the last sent so far will be sent.

Hence, this protocol tries hard to keep as many data packets outstanding as possible,
but not exceeding the window size, W . If ` data packets or ACKs get lost, then the effective
number of outstanding data packets reduces to W � `, until one of them times out, is
retransmitted and received successfully by the receiver, and its ACK received successfully
at the sender.

We will use a fixed size window in our discussion in this chapter. The sender picks
a maximum window size and does not change that during a stream. In practice, most
practical transport protocols on the Internet should implement a congestion control strategy
to adjust the window size to prevailing network conditions (level of congestion, rate of
data delivery, packet loss rates, round-trip times, etc.)

⌅ 19.5.1 Sliding Window Sender

We now describe the salient features of the sender side of this fixed-size sliding window
protocol. The sender maintains unacked pkts, a buffer of unacknowledged data packets.
Every time the sender is called (by a fine-grained timer, which we assume fires each slot),
it first checks to see whether any data packets were sent greater than “timeout” seconds
ago (assuming time is maintained in seconds). If so, the sender retransmits each of these
data packets, and takes care to change the packet transmission time of each of these pack-
ets to be the current time. For convenience, we usually maintain the time at which each
packet was last sent in the packet data structure, though other ways of keeping track of
this information are also possible.

After checking for retransmissions, the sender proceeds to see whether any new data
packets can be sent. To properly check if any new packets can be sent, the sender maintains
a variable, outstanding, which keeps track of the current number of outstanding data
packets. If this value is smaller than the maximum window size, the sender sends a new

310 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

data packet, setting the sequence number to be max seq + 1, where max seq is the highest
sequence number sent so far. Of course, we should remember to update max seq as well,
and increment outstanding by 1.

Whenever the sender gets an ACK, it should remove the acknowledged data packet
from unacked pkts (assuming it hasn’t already been removed), decrement outstanding,
and call the procedure to calculate the timeout (which will use the timestamp echoed in
the current ACK to update the EWMA filters and update the timeout value).

We would like outstanding to keep track of the number of unackowledged data pack-
ets between sender and receiver. We have described the method to do this task as follows:
increment it by 1 on each new data packet transmission, and decrement it by 1 on each
ACK that was not previously seen by the sender, corresponding to a packet the sender had
previously sent that is being acknowledged (as far as the sender is concerned) for the first
time. The question now is whether outstanding should be adjusted when a retransmis-
sion is done. A little thought will show that it should not be. The reason is that it is precisely
on a timeout of a data packet that the sender believes that the packet was actually lost, and
in the sender’s view, the packet has left the network. But the retransmission immediately
adds a data packet to the network, so the effect is that the number of outstanding packets
is exactly the same. Hence, no change is required in the code.

Implementing a sliding window protocol is sometimes error-prone even when one com-
pletely understands the protocol in one’s mind. Three kinds of errors are common. First,
the timeouts are set too low because of an error in the EWMA estimators, and data packets
end up being retransmitted too early, leading to spurious retransmissions. In addition to
keeping track of the sender’s smoothed round-trip time (srtt), RTT deviation, and timeout
estimates,7 it is a good idea to maintain a counter for the number of retransmissions done
for each data packet. If the network has a certain total loss rate between sender and re-
ceiver and back (i.e., the bi-directional loss rate), pl, the number of retransmissions should
be on the order of 1

1�p
l

� 1, assuming that each packet is lost independently and with the
same probability. (It is a useful exercise to work out why this formula holds.) If your im-
plementation shows a much larger number than this prediction, it is very likely that there’s
a bug in it.

Second, the number of outstanding data packets might be larger than the configured
window, which is an error. If that occurs, and especially if a bug causes the number of
outstanding packets to grow unbounded, delays will increase and it is also possible that
packet loss rates caused by congestion will increase. It is useful to place an assertion or two
that checks that the outstanding number of data packets does not exceed the configured
window.

Third, when retransmitting a data packet, the sender must take care to modify the time
at which the packet is sent. Otherwise, that packet will end up getting retransmitted re-
peatedly, a pretty serious bug that will cause the throughput to diminish.

⌅ 19.5.2 Sliding Window Receiver

At the receiver, the biggest change to the stop-and-wait case is to maintain a list of received
data packets that are out-of-order. Call this list rcvbuf. Each data packet that arrives is
added to this list, assuming it is not already on the list. It’s convenient to store this list

7In our lab, this information will be printed when you click on the sender node.

SECTION 19.5. SLIDING WINDOW PROTOCOL 311

in increasing sequence order. Then, check to see whether one or more contiguous data
packets starting from rcv seqnum + 1 are in rcvbuf. If they are, deliver them to the
application, remove them from rcvbuf, and remember to update rcv seqnum.

⌅ 19.5.3 Throughput

What is the throughput of the sliding window protocol we just developed? Clearly, we
send W data packets per RTT when there are no data packet or ACK losses, so the through-
put in the absence of losses is W/RTT packets per second. So the question one should ask
is, what should we set W to in order to maximize throughput, at least when there are no
data packet or ACK losses? After answering this question, we will provide a simple for-
mula for the throughput of the protocol in the absence of losses, and then finally consider
packet losses.

Setting W

One can address the question of how to choose W using Little’s law. Think of the entire
bi-directional path between the sender and receiver as a single queue (in reality it’s more
complicated than a single queue, but the abstraction of a single queue still holds). W is the
number of (unacknowledged) packets in the system and RTT is the mean delay between
the transmission of a data packet and the receipt of its ACK at the sender (upon which the
sender transmits a new data packet). We would like to maximize the processing rate of
this system. Note that this rate cannot exceed the bit rate of the slowest, or bottleneck, link
between the sender and receiver (i.e., the rate of the bottleneck link) . If that rate is B packets
per second, then by Little’s law, setting W = B ⇥ RTT will ensure that the protocol comes
close to achieving a thoroughput equal to the available bit rate.

But what should the RTT be in the above formula? After all, the definition of a “RTT
sample” is the time that elapses between the transmission of a data packet and the receipt
of an ACK for it. As such, it depends on other data using the path. Moreover, if one looks
at the formula B = W/ RTT, it suggests that one can simply increase the window size W
to any value and B may correspondingly just increase. Clearly, that can’t be right!

Consider the simple case when there is only one connection active over a network path.
Observe that the RTT experienced by a packet P sent on the connection may be broken
into two parts: one part that does not depend on any queueing delay (i.e., the sum of the
propagation, transmission, and processing delays of the packet and its ACK), and one part
that depends on how many other packets were ahead of P in the bottleneck queue. (Here
we are assuming that ACKs experience no queueing, for simplicity.) Denote the RTT in the
absence of queuing as RTT

min

, the minimum possible round-trip time that the connection
can experience.

Now, suppose the RTT of the connection is equal to RTT
min

. That is, there is no queue
building up at the bottleneck link. Then, the throughput of the connection is W/RTT
= W/RTT

min

. We would like this throughput to be the bottleneck link rate, B. Setting
W/RTT

min

= B, we find that W should be equal to B · RTT
min

.
This quantity—B · RTT

min

—is an important concept for sliding window protocols (all
sliding window protocols, not just the one we have studied). It is called the bandwidth-
delay product of the connection and is a property of the bi-directional network path be-
tween sender and receiver. When the window size is strictly smaller than the bandwidth-

312 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

delay product, the throughput will be strictly smaller than the bottleneck rate, B, and the
queueing delay will be non-existent. In this phase, the connection’s throughput linearly
increases as we increase the window size, W , assuming no other traffic intervenes. The
smallest window size for which the throughput will be equal to B is the bandwidth-delay
product.

This discussion shows that for our sliding window protocol, setting W = B ⇥ RTT
min

achieves the maximum possible throughput, B, in the absence of any data packet or ACK
losses. When packet losses occur, the window size will need to be higher to get maximum
throughput (utilization), because we need a sufficient number of unacknowledged data
packets to keep a B ⇥ RTT

min

worth of packets even when losses occur. A smaller win-
dow size will achieve sub-optimal throughput, linear in the window size, and inversely
proportional to RTT

min

.
But once W exceeds B ⇥ RTT

min

, the RTT experienced by the connection includes
queueing as well, and the RTT will no longer be a constant independent of W ! That is, in-
creasing W will cause RTT to also increase, but the rate, B, will no longer increase. What
is the throughput in this case?

We can answer this question by applying Little’s law twice. Once at the bottleneck
link’s queue, and once on the entire network path. We will show the intuitive result that if
W > B ⇥ RTT

min

, then the throughput is B packets per second.
First, let the average number of packets at the queue of the bottleneck link be Q. By

Little’s law applied to this queue, we know that Q = B · ⌧ , where B is the rate at which
the queue drains (i.e., the bottleneck link rate), and ⌧ is the average delay in the queue, so
⌧ = Q/B.

We also know that
RTT = RTT

min

+ ⌧ = RTT
min

+Q/B. (19.5)

Now, consider the window size, W , which is the number of unacknowledged packets.
We know that all these packets, by conservation of packets, must either be in the bottleneck
queue, or in the non-queueing part of the system. That is,

W = Q+B · RTT
min

. (19.6)

Finally, from Little’s law applied to the entire bi-directional network path,

Throughput =

W

RTT
(19.7)

=

B · RTT
min

+Q

RTT
min

+ (Q/B)

(19.8)

= B (19.9)

Thus, we can conclude that, in the absence of any data packet or ACK losses, the con-
nection’s throughput is as shown schematically in Figure 19-8.

Throughput of the sliding window protocol with packet losses

Assuming that one sets the window size properly, i.e., to be large enough so that W �

B ⇥ RTT
min

always, even in the presence of data or ACK losses, what is the maximum

SECTION 19.5. SLIDING WINDOW PROTOCOL 313

Window'size,'W'

Throughput'of'connec5on'
(no'data'or'ACK'losses)'

B*RTTmin'

BoAleneck'link'rate'
B'

Figure 19-8: Throughput of the sliding window protocol as a function of the window size in a network
with no other traffic. The bottleneck link rate is B packets per second and the RTT without any queueing
is RTTmin. The product of these two quantities is the bandwidth-delay product.

throughput of our sliding window protocol if the network has a certain probability of
packet loss?

Consider a simple model in which the network path loses any packet—data or ACK—
such that the probability of either a data packet being lost or its ACK being lost is equal to
`, and the packet loss random process is independent and identically distributed (the same
model as in our analysis of stop-and-wait). Then, the utilization achieved by our sliding
window reliable transport protocol is at most 1� `. Moreover, for a large-enough window
size, W , our sliding window protocol comes close to achieving it.

The reason for the upper bound on utilization is that in this protocol, a data packet is
acknowledged only when the sender gets an ACK explicitly for that packet. Now consider
the number of transmissions that any given data packet must incur before its ACK is re-
ceived by the sender. With probability 1� `, we need one transmission, with probability
`(1� `), we need two transmissions, and so on, giving us an expected number of transmis-
sions of 1

1�` . If we make this number of transmissions, one data packet is successfully sent
and acknowledged. Hence, the utilization of the protocol can be at most 1

1
1�`

= 1� `. In

fact, it turns out the 1� ` is the capacity (i.e., upper-bound on throughput) for any channel
(network path) with packet loss rate `.

If the sender picks a window size sufficiently larger than the bandwidth-minimum-
RTT product, so that at least bandwidth-minimum-RTT packets are in transit (unacknowl-
edged) even in the face of data and ACK losses, then the protocol’s utilization will be close
to the maximum value of 1� `.

314 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

Is a good timeout important for the sliding window protocol?

Given that our sliding window protocol always sends a data packet every time the sender
gets an ACK, one might reasonably ask whether setting a good timeout value, which under
even the best of conditions involves a hard trade-off, is essential. The answer turns out to
be subtle: it’s true that the timeout can be quite large, because data packets will continue to
flow as long as some ACKs are arriving. However, as data packets (or ACKs) get lost, the
effective window size keeps falling, and eventually the protocol will stall until the sender
retransmits. So one can’t ignore the task of picking a timeout altogether, but one can pick
a more conservative (longer) timeout than in the stop-and-wait protocol. However, the
longer the timeout, the bigger the stalls experienced by the receiver application—even
though the receiver’s transport protocol would have received the data packets, they can’t
be delivered to the application because it wants the data to be delivered in order. Therefore,
a good timeout is still quite useful, and the principles discussed in setting it are widely
useful.

Secondly, we note that the longer the timeout, the bigger the receiver’s buffer has to be
when there are losses; in fact, in the worst case, there is no bound on how big the receiver’s
buffer can get. To see why, think about what happens if we were unlucky and a data packet
with a particular sequence number kept getting lost, but everything else got through.

The two factors mentioned above affect the throughput of the transport protocol, but
the biggest consequence of a long timeout is the effect on the latency perceived by appli-
cations (and users). The reason is that data packets are delivered in-order by the protocol
to the application, which means that a missing packet with sequence number k will cause
the application to stall, even though data packets with sequence numbers larger than k
have arrived and are in the transport protocol’s receiver buffer. Hence, an excessively long
timeout hurts interactivity and degrades the user’s experience.

⌅ 19.6 Summary

This chapter described the key concepts in the design on a reliable data transport proto-
col. The big idea is to use redundancy in the form of careful retransmissions, for which
we developed the idea of using sequence numbers to uniquely identify data packets and
acknowledgments for the receiver to signal the successful reception of a data packet to
the sender. We discussed how the sender can set a good timeout, balancing between the
ability to track a persistent change of the round-trip times against the ability to ignore non-
persistent glitches. The method to calculate the timeout involved estimating a smoothed
mean and linear deviation using an exponential weighted moving average, which is a sin-
gle real-zero low-pass filter. The timeout itself is set at the mean + 4 times the deviation to
ensure that the tail probability of a spurious retransmission is small. We used these ideas
in developing the simple stop-and-wait protocol.

We then developed the idea of a sliding window to improve performance, and showed
how to modify the sender and receiver to use this concept. Both the sender and receiver are
now more complicated than in the stop-and-wait protocol, but when there are no losses,
one can set the window size to the bandwidth-delay product and achieve high throughput
in this protocol. We also studied how increasing the window size increases the throughput
linearly up to a point, after only the (queueing) delay increases, and not the throughput of

SECTION 19.6. SUMMARY 315

the connection.

⌅ Problems and Questions

1. Consider a best-effort network with variable delays and losses. In such a network,
Louis Reasoner suggests that the receiver does not need to send the sequence number
in the ACK in a correctly implemented stop-and-wait protocol, where the sender
sends data packet k + 1 only after the ACK for data packet k is received. Explain
whether he is correct or not.

2. The 802.11 (WiFi) link-layer uses a stop-and-wait protocol to improve link reliability.
The protocol works as follows:

(a) The sender transmits data packet k + 1 to the receiver as soon as it receives an
ACK for the data packet k.

(b) After the receiver gets the entire data packet, it computes a checksum (CRC).
The processing time to compute the CRC is Tp and you may assume that it does
not depend on the packet size.

(c) If the CRC is correct, the receiver sends a link-layer ACK to the sender. The
ACK has negligible size and reaches the sender instantaneously.

The sender and receiver are near each other, so you can ignore the propagation delay.
The bit rate is R = 54 Megabits/s, the smallest data packet size is 540 bits, and the
largest data packet size is 5,400 bits.

What is the maximum processing time Tp that ensures that the protocol will achieve
a throughput of at least 50% of the bit rate of the link in the absence of data packet
and ACK losses, for any data packet size?

3. Alyssa P. Hacker sets up a wireless network in her home to enable her computer
(“client”) to communicate with an Access Point (AP). The client and AP communi-
cate with each other using a stop-and-wait protocol.

The data packet size is 10000 bits. The total round-trip time (RTT) between the AP
and client is equal to 0.2 milliseconds (that includes the time to process the packet,
transmit an ACK, and process the ACK at the sender) plus the transmission time of
the 10000 bit packet over the link.

Alyssa can configure two possible transmission bit rates for her link, with the follow-
ing properties:

Bit rate Bi-directional packet loss probability RTT

10 Megabits/s 1/11

20 Megabits/s 1/4

Alyssa’s goal is to select the bit rate that provides the higher throughput for a stream
of packets that need to be delivered reliably between the AP and client using stop-
and-wait. For both bit rates, the retransmission timeout (RTO) is 2.4 milliseconds.

316 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

(a) Calculate the round-trip time (RTT) for each bit rate?
(b) For each bit rate, calculate the expected time, in milliseconds, to successfully

deliver a packet and get an ACK for it. Show your work.
(c) Using the above calculations, which bit rate would you choose to achieve

Alyssa’s goal?

4. Suppose the sender in a reliable transport protocol uses an EWMA filter to estimate
the smoothed round trip time, srtt, every time it gets an ACK with an RTT sample r.

srtt ! ↵ · r +(1� ↵)· srtt

We would like every data packet in a window to contribute a weight of at least 1%
to the srtt calculation. As the window size increases, should ↵ increase, decrease, or
remain the same, to achieve this goal? (You should be able to answer this question
without writing any equations.)

5. TCP computes an average round-trip time (RTT) for the connection using an EWMA
estimator, as in the previous problem. Suppose that at time 0, the initial estimate,
srtt, is equal to the true value, r

0

. Suppose that immediately after this time, the RTT
for the connection increases to a value R and remains at that value for the remainder
of the connection. You may assume that R >> r

0

.

Suppose that the TCP retransmission timeout value at step n, RTO(n), is set to � · srtt.
Calculate the number of RTT samples before we can be sure that there will be no
spurious retransmissions. Old TCP implementations used to have � = 2 and ↵ =

1/8. How many samples does this correspond to before spurious retransmissions
are avoided, for this problem? (As explained in Section 19.3, TCP now uses the mean
linear deviation as its RTO formula. Originally, TCP didn’t incorporate the linear
deviation in its RTO formula.)

6. Consider a sliding window protocol between a sender and a receiver. The receiver
should deliver data packets reliably and in order to its application.

The sender correctly maintains the following state variables:
unacked pkts – the buffer of unacknowledged data packets
first unacked – the lowest unacked sequence number (undefined if all data

packets have been acked)
last unacked – the highest unacked sequence number (undefined if all data

packets have been acked)
last sent – the highest sequence number sent so far (whether acknowledged or

not)

If the receiver gets a data packet that is strictly larger than the next one in sequence,
it adds the packet to a buffer if not already present. We want to ensure that the size
of this buffer of data packets awaiting delivery never exceeds a value W � 0. Write
down the check(s) that the sender should perform before sending a new data packet
in terms of the variables mentioned above that ensure the desired property.

7. Alyssa P. Hacker measures that the network path between two computers has a
round-trip time (RTT) of 100 milliseconds. The queueing delay is negligible. The

SECTION 19.6. SUMMARY 317

rate of the bottleneck link between them is 1 Mbyte/s. Alyssa implements the re-
liable sliding window protocol studied in 6.02 and runs it between these two com-
puters. The data packet size is fixed at 1000 bytes (you can ignore the size of the
acknowledgments). There is no other traffic.

(a) Alyssa sets the window size to 10 data packets. What is the resulting maximum
utilization of the bottleneck link? Explain your answer.

(b) Alyssa’s implementation of a sliding window protocol uses an 8-bit field for
the sequence number in each data packet. Assuming that the RTT remains the
same, what is the smallest value of the bottleneck link bandwidth (in Mbytes/s)
that will cause the protocol to stop working correctly when packet losses occur?
Assume that the definition of a window in her protocol is the difference between
the last transmitted sequence number and the last in-sequence ACK.

(c) Suppose the window size is 10 data packets and that the value of the sender’s
retransmission timeout is 1 second. A data packet gets lost before it reaches the
receiver. The protocol continues and no other data packets or acks are lost. The
receiver wants to deliver data to the application in order.
What is the maximum size, in packets, that the buffer at the receiver can grow
to in the sliding window protocol? Answer this question for the two different
definitions of a “window” below.

i. When the window is the maximum difference between the last transmitted
data packet and the last in-sequence ACK received at the sender:

ii. When the window is the maximum number of unacknowledged data pack-
ets at the sender:

8. In the reliable transport protocols we studied, the receiver sends an acknowledgment
(ACK) saying “I got k” whenever it receives a data packet with sequence number k.
Ben Bitdiddle invents a different method using cumulative ACKs: whenever the
receiver gets a data packet, whether in order or not, it sends an ACK saying “I got
every data packet up to and including `”, where ` is the highest, in-order data packet
received so far.

The definition of the window is the same as before: a window size of W means that
the maximum number of unacknowledged data packets is W . Every time the sender
gets an ACK, it may transmit one or more data packets, within the constraint of the
window size. It also implements a timeout mechanism to retransmit data packets
that it believes are lost using the algorithm described in these notes. The protocol
runs over a best-effort network, but no data packet or ACK is duplicated at the network
or link layers.

The sender sends a stream of new data packets according to the sliding window
protocol, and in response gets the following cumulative ACKs from the receiver:

1 2 3 4 4 4 4 4 4 4

(a) Now, suppose that the sender times out and retransmits the first unacknowl-
edged data packet. When the receiver gets that retransmitted data packet, what
can you say about the ACK, a, that it sends?

318 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

i. a = 5.
ii. a � 5.

iii. 5 a 11.
iv. a = 11.
v. a 11.

(b) Assuming no ACKs were lost, what is the minimum window size that can pro-
duce the sequence of ACKs shown above?

(c) Is it possible for the given sequence of cumulative ACKs to have arrived at the
sender even when no data packets were lost en route to the receiver when they
were sent?

(d) A little bit into the data transfer, the sender observes the following sequence of
cumulative ACKs sent from the receiver:

21 22 23 25 28

The window size is 8 packets. What data packet(s) should the sender transmit
upon receiving each of the above ACKs, if it wants to maximize the number of
unacknowledged data packets?

On getting ACK # ! Send ?? On getting ACK # ! Send ??

21 ! 22 !

23 ! 25 !

28 !

9. Give one example of a situation where the cumulative ACK protocol described in
the previous problem gets higher throughput than the sliding window protocol de-
scribed in this chapter.

10. A sender S and receiver R communicate reliably over a series of links using a sliding
window protocol with some window size, W packets. The path between S and R
has one bottleneck link (i.e., one link whose rate bounds the throughput that can be
achieved), whose data rate is C packets/second. When the window size is W , the
queue at the bottleneck link is always full, with Q data packets in it. The round trip
time (RTT) of the connection between S and R during this data transfer with window
size W is T seconds, including the queueing delay. There are no data packet or ACK
losses in this case, and there are no other connections sharing this path.

(a) Write an expression for W in terms of the other parameters specified above.

(b) We would like to reduce the window size from W and still achieve high uti-
lization. What is the minimum window size, Wmin, which will achieve 100%
utilization of the bottleneck link? Express your answer as a function of C, T ,
and Q.

(c) Now suppose the sender starts with a window size set to Wmin. If all these data
packets get acknowledged and no packet losses occur in the window, the sender
increases the window size by 1. The sender keeps increasing the window size

SECTION 19.6. SUMMARY 319

in this fashion until it reaches a window size that causes a data packet loss to
occur. What is the smallest window size at which the sender observes a data
packet loss caused by the bottleneck queue overflowing? Assume that no ACKs
are lost.

11. Ben Bitdiddle decides to use the sliding window transport protocol described in
these notes on the network shown in Figure 19-9. The receiver sends end-to-end
ACKs to the sender. The switch in the middle simply forwards packets in best-effort
fashion.

Sender& Switch& Receiver&

Queue& 106&bytes/s&

106&bytes/s&

108&bytes/s&

108&bytes/s&

One9way&propaga>on&delay&&
=&10&milliseconds&

Propaga>on&delay&&
=&0&milliseconds&

Max&queue&size&=&100&packets&
Packet&size&=&1000&bytes&
ACK&size&=&40&bytes&
Ini>al&sender&window&size&=&10&packets&

Figure 19-9: Ben’s network.

(a) The sender’s window size is 10 packets. At what approximate rate (in packets
per second) will the protocol deliver a multi-gigabyte file from the sender to the
receiver? Assume that there is no other traffic in the network and packets can
only be lost because the queues overflow.

i. Between 900 and 1000.
ii. Between 450 and 500.

iii. Between 225 and 250.
iv. Depends on the timeout value used.

(b) You would like to double the throughput of this sliding window transport pro-
tocol running on the network shown on the previous page. To do so, you can
apply one of the following techniques alone:

i. Double the window size.
ii. Halve the propagation time of the links.

iii. Double the rate of the link between the Switch and Receiver.

For each of the following sender window sizes, list which of the above tech-
niques, if any, can approximately double the throughput. If no technique does
the job, say “None”. There might be more than one answer for each window
size, in which case you should list them all. Each technique works in isolation.

320 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

1. W = 10:
2. W = 50:
3. W = 30:

12. Eager B. Eaver starts MyFace, a next-generation social networking web site in which
the only pictures allowed are users’ faces. MyFace has a simple request-response
interface. The client sends a request (for a face), the server sends a response (the
face). Both request and response fit in one packet (the faces in the responses are small
pictures!). When the client gets a response, it immediately sends the next request.
The size of the largest packet is S = 1000 bytes.

Eager’s server is in Cambridge. Clients come from all over the world. Eager’s mea-
surements show that one can model the typical client as having a 100 millisecond
round-trip time (RTT) to the server (i.e., the network component of the request-
response delay, not counting the additional processing time taken by the server, is
100 milliseconds).

If the client does not get a response from the server in a time ⌧ , it resends the request.
It keeps doing that until it gets a response.

(a) Is the protocol described above “at least once”, “at most once”, or “exactly
once”?

(b) Eager needs to provision the link bandwidth for MyFace. He anticipates that at
any given time, the largest number of clients making a request is 2000. What
minimum outgoing link bandwidth from MyFace will ensure that the link con-
necting MyFace to the Internet will not experience congestion?

(c) Suppose the probability of the client receiving a response from the server for
any given request is p. What is the expected time for a client’s request to obtain
a response from the server? Your answer will depend on p, RTT, and ⌧ .

13. Lem E. Tweetit is designing a new protocol for Tweeter, a Twitter rip-off. All tweets
in Tweeter are 1000 bytes in length. Each tweet sent by a client and received by the
Tweeter server is immediately acknowledged by the server; if the client does not
receive an ACK within a timeout, it re-sends the tweets, and repeats this process
until it gets an ACK.

Sir Tweetsalot uses a device whose data transmission rate is 100 Kbytes/s, which you
can assume is the bottleneck rate between his client and the server. The round-trip
propagation time between his client and the server is 10 milliseconds. Assume that
there is no queueing on any link between client and server and that the processing
time along the path is 0. You may also assume that the ACKs are very small in size,
so consume neglible bandwidth and transmission time (of course, they still need to
propagate from server to client). Do not ignore the transmission time of a tweet.

(a) What is the smallest value of the timeout, in milliseconds, that will avoid spuri-
ous retransmissions?

SECTION 19.6. SUMMARY 321

(b) Suppose that the timeout is set to 90 milliseconds. Unfortunately, the probability
that a given client transmission gets an ACK is only 75%. What is the utilization
of the network?

14. A sender A and a receiver B communicate using the stop-and-wait protocol studied
in this chapter. There are n links on the path between A and B, each with a data rate
of R bits per second. The size of a data packet is S bits and the size of an ACK is K
bits. Each link has a physical distance of D meters and the speed of signal propaga-
tion over each link is c meters per second. The total processing time experienced by a
data packet and its ACK is Tp seconds. ACKs traverse the same links as data packets,
except in the opposite direction on each link (the propagation time and data rate are
the same in both directions of a link). There is no queueing delay in this network.
Each link has a packet loss probability of p, with packets being lost independently.

What are the following four quantities in terms of the parameters given?

(a) Transmission time for a data packet on one link between A and B:
.

(b) Propagation time for a data packet across n links between A and B:
.

(c) Round-trip time (RTT) between A and B?
.

(The RTT is defined as the elapsed time between the start of transmission of a
data packet and the completion of receipt of the ACK sent in response to the
data packet’s reception by the receiver.)

(d) Probability that a data packet sent by A will reach B:
.

15. Ben Bitdiddle gets rid of the timestamps from the packet header in this chapter’s
stop-and-wait transport protocol running over a best-effort network. The network
may lose or reorder packets, but it never duplicates a packet. In the protocol, the
receiver sends an ACK for each data packet it receives, echoing the sequence number
of the packet that was just received.

The sender uses the following method to estimate the round-trip time (RTT) of the
connection:

1. When the sender transmits a packet with sequence number k, it stores the time
on its machine at which the packet was sent, tk. If the transmission is a retrans-
mission of sequence number k, then tk is updated.

2. When the sender gets an ACK for packet k, if it has not already gotten an ACK
for k so far, it observes the current time on its machine, ak, and measures the
RTT sample as ak � tk.

If the ACK received by the sender at time ak was sent by the receiver in response
to a data packet sent at time tk, then the RTT sample ak � tk is said to be correct.
Otherwise, it is incorrect.

State True or False for the following statements, with an explanation for your choice.

322 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

(a) If the sender never retransmits a data packet during a data transfer, then all the
RTT samples produced by Ben’s method are correct.

(b) If data and ACK packets are never reordered in the network, then all the RTT
samples produced by Ben’s method are correct.

(c) If the sender makes no spurious retransmissions during a data transfer (i.e., it
only retransmits a data packet if all previous transmissions of data packets with
the same sequence number did in fact get dropped before reaching the receiver),
then all the RTT samples produced by Ben’s method are correct.

16. Opt E. Miser implements this chapter’s stop-and-wait reliable transport protocol
with one modification: being stingy, he replaces the sequence number field with a
1-bit field, deciding to reuse sequence numbers across data packets. The first data
packet has sequence number 1, the second has number 0, the third has number 1, the
fourth has number 0, and so on. Whenever the receiver gets a packet with sequence
number s(= 0 or 1), it sends an ACK to the sender echoing s. The receiver delivers a
data packet to the application if, and only if, its sequence number is different from the
last one delivered, and upon delivery, updates the last sequence number delivered.

He runs this protocol over a best-effort network that can lose packets (with prob-
ability < 1) or reorder them, and whose delays are variable. Explain whether the
modified protocol always provides reliable, in-order delivery of a stream of packets.

17. Consider a reliable transport connection using this chapter’s sliding window proto-
col on a network path whose RTT in the absence of queueing is RTT

min

= 0.1 seconds.
The connection’s bottleneck link has a rate of C = 100 packets per second, and the
queue in front of the bottleneck link has space for Q = 20 packets.

Assume that the sender uses a sliding window protocol with fixed window size.
There is no other traffic on the path.

(a) If the window size is 8 packets, then what is the throughput of the connection?

(b) If the window size is 16 packets, then what is the throughput of the connection?

(c) What is the smallest window size for which the connection’s RTT exceeds
RTT

min

?

(d) What is the largest value of the sender window size for which no packets are
lost due to a queue overflow?

18. Annette Werker correctly implements the fixed-size sliding window protocol de-
scribed in this chapter. She instruments the sender to store the time at which each
DATA packet is sent and the time at which each ACK is received. A snippet of the
DATA and ACK traces from an experiment is shown in the picture below. Each + is
a DATA packet transmission, with the x-axis showing the transmission time and the
y-axis showing the sequence number. Each ⇥ is an ACK reception, with the x-axis
showing the ACK reception time and the y-axis showing the ACK sequence number.
All DATA packets have the same size.
Answer the following questions, providing a brief explanation for each one.

(a) Estimate any one sample round-trip time (RTT) of the connection.

(b) Estimate the sender’s retransmission timeout (RTO) for this trace.

SECTION 19.6. SUMMARY 323

 840

 860

 880

 900

 920

 940

 960

 980

 1000

 1020

 1040

 1060

 1080

 1160 1180 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400

D
AT

A
or

 A
C

K
Se

qu
en

ce
 N

um
be

r

Time (milliseconds)

’DATA’
’ACK’

(c) On the picture, circle DATA packet retransmissions for four different sequence
numbers.

(d) Some DATA packets in this trace may have incurred more than one retransmis-
sion? On the picture, draw a square around one such retransmission.

(e) What is your best estimate of the sender’s window size?

(f) What is your best estimate of the throughput in packets per second of the con-
nection?

(g) Considering only sequence numbers > 880, what is your best estimate of the
packet loss rate experienced by DATA packets?

19. Consider the same setup as the previous problem. Suppose the window size for the
connection is equal to twice the bandwidth-delay product of the network path.

For each change to the parameters of the network path or the sender given below,
explain if the connection’s throughput (not utilization) will increase, decrease, or
remain the same. In each statement, nothing other than what is specified in that
statement changes.

(a) The packet loss rate, `, decreases to `/3.

324 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS

(b) The minimum value of the RTT, R, increases to 1.8R.

(c) The window size, W , decreases to W/3.

20. Annette Werker conducts tests between a server and a client using the sliding win-
dow protocol described in this chapter. There is no other traffic on the path and no
packet loss. Annette finds that:

• With a window size W
1

= 50 packets, the throughput is 200 packets per second.

• With a window size W
2

= 100 packets, the throughput is 250 packets per second.

Annette finds that even this small amount of information allows her to calculate
several things, assuming there is only one bottleneck link. Calculate the following:

(a) The minimum round-trip time between the client and server.

(b) The average queueing delay at the bottleneck when the window size is 100

packets.

(c) The average queue size when the window size is 100 packets.

